
REPORT DOCUMENTATION PAGE 

Public reporting burden for this collection of information is estimated to average I hour per response, including the lime for reviewing instructions, searching existing d 
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for redu 
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction 

AFRL-SR-AR-TR-02- 

1. AGENCY USE ONLY (Leave blank) 

4. TITLE AND SUBTITLE 

jmmm*mmmmmmwam 

3. REPORT TYPE AND DATES COVERED 

FINAL REPORT 15 DEC 00 TO 14 DEC 02 
5. FUNDING NUMBERS 

IMDIOIIDIHODEOOIIIIITORI P*P, F49620-01-1-0098 

2. REPORT DATE 

16 Oct 02 

6. AUTHOR(S) 

DR SUBHASH C. BASAK 

2312/AX 

61102F 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

UNIVERSITY OF MINNESOTA 
CENTER FOR WATER AND THE ENVIRONMENT 
5013 MILLER TRUNK HIGHWAY 
DULUTHMN 55811 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

AFOSR/NL 
4015 WILSON BLVD., ROOM 713 
ARLINGTON, VA 22203-1954 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

ID. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

APPROVE FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words! 
In recent years, there has been increased interest in the development and use of quantitative structure activity/property 
relationship (QSAR/QSPR) models. For the most part, this is due to the fact that experimental data is sparse and obtaining 
such data is costly, while theoretical structural descriptors can be obtained quickly and inexpensively. In this study, three 
linear regression methods, viz, principal component regression (PCR), partial least squares (PLS), and ridge regression (RR) 
were used to develop QSPR models for the estimation of human blood; air partition coefficient (logP blood;air) for a group o? 

31 diverse low-molecular weight volatile chemicals from their computed molecular descriptors. In general, RR was found to 
be superior to PCR or PLS. Comparisons were made between models developed using parameters based solely on molecular 
structure and linear regression (LR) models developed using experimental properties, including saline;air partition coefficient 
(longP saline;air) and olive oil;air partition coefficient (logP olive oil;air), as independent variables, indicating that the 
structure-property correlations are comparable to the property-property correlations. The best models, however, were those 
which used rat logP blooda;air as the independent variable. Haloalkane subgroups were modeled separately for comparative 
purposes, and although models based on the congeneric compounds were superior, the models developed on the complete set 
of diverse compounds were of acceptable quality. The structural descriptors were superior, the models developed on the 

complete set of diverse compounds were of acceptable quality. 

14. SUBJECT TERMS 

Blood:air partition coefficient; PBPK model; theoretical molecular descriptors; ridge 
regression; quantitative structure-property relationship (QSPR) model. 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclass 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclass Unclass 

// 2,9-   'P-7 

15. NUMBER OF PAGES 

16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

Standard Form 298 (Rev. 2-89) (EG) 
Prescribed by ANSI Std. 239.18 
Designed using Perform Pro, WHS/DIOR, Oct 94 



Submitted to Risk Analysis 

PREDICTION OF HUMAN BLOOD:AIR PARTITION COEFFICIENT: A COMPARISON OF 
STRUCTURE-BASED AND PROPERTY-BASED METHODS 

S. C. BASAK,a D. MILLS,3 D. M. HAWKINS,b and H. A. EL-MASRIc 

" Natural Resources Research Institute, University of Minnesota Duluth 
5013 Miller Trunk Highway, Duluth, MN 55811, USA 

b School of Statistics 313 Ford Hall, 224 Church Street S. E, University of Minnesota Minneapolis, MN 55455, 
USA 

c Computational Toxicology Laboratory, Division of Toxicology Agency for Toxic Substances and Disease Registry 
(ATSDR), Executive Park Building 4, 1600 Clifton Road, E-29, Atlanta, GA 30333,  USA 

In recent years, there has been increased interest in the development and use of quantitative structure 

activity/property relationship (QSAR/QSPR) models. For the most part, this is due to the fact that experimental data 

is sparse and obtaining such data is costly, while theoretical structural descriptors can be obtained quickly and 

inexpensively. In this study, three linear regression methods, viz. principal component regression (PCR), partial least 

squares (PLS), and ridge regression (RR), were used to develop QSPR models for the estimation of human blood:air 

partition coefficient (logPblo0d:air) for a group of 31 diverse low-molecular weight volatile chemicals from their 

computed molecular descriptors. In general, RR was found to be superior to PCR or PLS. Comparisons were made 

between models developed using parameters based solely on molecular structure and linear regression (LR) models 

developed using experimental properties, including saline:air partition coefficient (logPsaiine:air) and olive oil:air 

partition coefficient (logPolive ***), as independent variables, indicating that the structure-property correlations are 

comparable to the property-property correlations. The best models, however, were those which used rat logPbi00<i:air 

as the independent variable. Haloalkane subgroups were modeled separately for comparative purposes, and although 

models based on the congeneric compounds were superior, the models developed on the complete set of diverse 

compounds were of acceptable quality. The structural descriptors were placed into one of three classes based on 

level of complexity: Topostructural (TS), topochemical (TC), or 3-dimensional / geometrical (3D). Modeling was 

performed using the structural descriptor classes both in a hierarchical fashion and separately. The results indicate 

that the highest quality structure-based models, in terms of descriptor classes, were those derived using TC or 

TS+TC descriptors. 

Key Words: Blood:air partition coefficient; PBPK model; theoretical molecular descriptors; ridge regression; 

quantitative structure-property relationship (QSPR) model. 
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1. INTRODUCTION 

Modern lifestyle worldwide is based on the use of a large number of chemicals. Natural and synthetic 

chemicals are used as drugs, pesticides, herbicides, components of diagnostic tools, ingredients and 

solvents in industrial processes, to name just a few. The Toxic Substances Control Act (TSCA) Inventory 

maintained by the United States Environmental Protection Agency (USEPA) currently has over 81,000 

entries and the list is growing every year.(I) Many of these chemicals are used for various purposes and 

have the potential to be released in the environment. Therefore, it is natural that we need to carry out risk 

assessment of the TSCA chemicals, particularly for those that are used frequently and in large quantities. 

Volatile organic chemicals (VOCs) constitute a class of chemicals that are frequently used in various 

industrial processes. Therefore, there is an interest to predict the potential adverse effects of these 

chemicals on human and environmental health. The overall risk of a chemical is determined primarily by 

its intrinsic toxicity (hazard) and exposure potential. 

The blood:air partition coefficient of VOCs is an important determinant of pulmonary uptake of such 

chemicals from inhaled air. Such parameters are routinely used in building physiologically-based 

pharmacokinetic (PBPK) models for exposure assessment of such chemicals. Solubility of VOCs in blood 

is determined by its composition including the content of neutral lipid, phospholipid, and water, as well as 

the extent of binding of these chemicals to specific components such as plasma proteins and 

hemoglobin.(2) Such physicochemical considerations can be used to come up with physicochemically- 

based methods for the estimation of partition coefficient values of chemicals. The other possibility is the 

use of molecular descriptors to estimate partition coefficient of chemicals directly from their structure. 

Such quantitative structure-activity/property relationship (QSAR/QSPR) methods derived using 

theoretical descriptors are based on the idea that observable physicochemical and biological properties of 

chemicals are determined by their molecular structure. In particular, QSPRs have been found to be useful 

in the estimation of physicochemical properties such as octanol: water partition coefficient of various 

groups of chemicals/3,4) as well as the degree of transport through the blood-brain barrier(5) and skin,(6) of 

various congeneric and diverse sets. 

While some quantitative models use experimental data per se as independent variables, it is important 

to note that experimental data does not exist for the majority of compounds, and obtaining such data is 

costly in terms of time and monetary resources. Computational modeling involving algorithmically 

calculated parameters based solely on molecular structure is an inexpensive alternative. In this paper, we 

have attempted to develop QSPR models to estimate human blood:air partition coefficients for a set of 31 

VOCs using molecular descriptors which can be computed directly from molecular structure. 
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2. METHODS 

2.1 Database. Liquid:air partition coefficients were experimentally determined by Gargas et alP using a 

modified version of the gas-phase vial equilibrium technique® for a set of low molecular-weight volatile 

chemicals. Table I includes experimentally determined human and male Fischer 344 rat blood:air partition 

coefficient data for a set of 31 chemicals including 18 haloalkanes, 2 nitroalkanes, 2 aliphatic 

hydrocarbons, 4 haloalkenes, and 5 aromatics compounds. The human blood:air partition coefficient 

values were determined on blood pretreated with diethyl maleate to inhibit an observed glutathione 

transferase reaction. Experimental saline:air and olive oihair partition coefficients, determined by Gargas 

et al, are also listed in Table I. All experimental values were obtained at 37 °C. 

It should be noted that the data used in the current study are a subset ofthat reported by Gargas et al.(7) 

Two cis/trans isomers were eliminated because they are indistinguishable in terms of their calculated 

molecular descriptors based on SMILES input. Methyl chloride was also removed from the data set as it 

is not possible to calculate our entire set of theoretic descriptors on two-atom compounds. In addition, 

two compounds were reported without discrete values for 0.9% saline:air partition coefficient and thus 

were not included in this study. 

2.2 Theoretical Molecular Descriptors. Theoretical molecular descriptors may be divided into 

hierarchical classes based upon level of complexity. Topostructural (TS) descriptors, which encode 

information strictly on the adjacency and connectedness of atoms within a molecule, make up the simplest 

of the hierarchical classes. Topochemical (TC) descriptors encode information related to the chemical 

nature of a molecule ipcluding bond type. The 3-dimensional or shape descriptors (3D) are still more 

complex, encoding information about the 3-dimensional aspects of a molecule. Calculated logPB^ctanoi:water 

descriptors^ were included at the final stage of hierarchical model development. The topostructural and 

topochemical descriptors are collectively referred to as topological descriptors. 

Descriptors used in the present study were derived from molecular structure using software packages 

including POLLY,(10) Triplet/11'12) and Molconn-Z.(13) From POLLY, a set of topological descriptors is 

available, including a large group of connectivity indices,(14-17) path-length descriptors,(14) and information 

theoretic08'19) and neighborhood complexity indices.(19) The Triplet descriptors also constitute a large 

group of topological parameters. They are derived from a matrix, a main diagonal column vector, and a 

free term column vector, converting the matrix into a system of linear equations whose solutions are the 

local vertex invariants. These local vertex invariants are then used in the following mathematical 

operations in order to obtain the triplet descriptors: 
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1. Summation, EjX; 

2. Summation of squares, E;Xi2 

in 

3. Summation of square roots, EjX; 

4. Sum of inverse square root of cross-product over edges ij, Ejj(XiXj)" 

5. Product, N(EiXj)
1/N 

Molconn-Z provides additional topological descriptors, including an extended set of connectivity indices, 

electrotopological indices/20,21) and hydrogen bonding descriptors, as well as a small set of molecular 

shape descriptors. 

H-Bond, a software program developed by Basak,(22) was used to calculate HBh a measure of 

hydrogen bonding potential. Balaban's J indices were also calculated by software developed by the 

authors.(23-25) 

LogP^canoiwater values were calculated by the LogP program(9) and are included in Table I. Table II 

provides a brief description of all other theoretical molecular descriptors used in the current study, though 

the calculated values for these descriptors are not included for the sake of brevity. 

2.3 Statistical Analysis. Independent and dependent variables were scaled by the natural logarithm, as 

their respective ranges differed by several orders of magnitude. The CORK, procedure of the SAS 

statistical package(26) was used to identify perfectly correlated descriptors, i.e. r = 1.0. In each case, only 

one descriptor of a perfectly correlated pair was retained for use in the subsequent analysis. Any 

descriptor that either had a value of zero for all compounds in the data set or could not be calculated for 

all compounds in the data set was removed. 

The structure-property models were developed using ridge regression (RR),(27) principal components 

regression (PCR),(28) and partial least squares (PLS) regression(29"31) methodologies, utilizing molecular 

descriptors in a hierarchical fashion. In addition, each class of descriptors was used independently to 

obtain single-class models. RR, PCR, and PLS are useful in cases wherein the number of descriptors is 

much greater than the number of observations, as well as in cases where the independent variables are 

highly intercorrelated. In addition, these regression methods make use of all independent variables as 

opposed to subset regression wherein it is possible that important parameters may be eliminated from the 

study. Linear regression (LR) was used to obtain the property-property models, which involve 1-2 

independent variables. Statistical parameters reported include the cross-validated R2 value and the PRESS 

statistic which are reliable measures of model predictability. In addition, the t values can be examined in 
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order to identify significant descriptors. Although a descriptor with a large 11 | indicates that the 

associated descriptor is important in the model, it should be cautioned that the reverse is not necessarily 

true. 

Honest assessment of the quality of a prediction model is seldom straightforward, but is particularly 

challenging in a situation such as this where the number of independent variables far exceeds the number 

of observations.*32'33' In these cases, conventional regression measures such as R2 are useless. The 

measure we use is the cross-validation (or jack-knife) sum of squares. For this measure, each compound 

in turn is omitted from the data set, and the coefficients of the regression model (RR, PLS or PCR) 

computed using the remaining n-1 cases. These coefficients are used to predict the hold-out case. The 

overall quality of the fit is measured by the prediction sum of squares PRESS -the sum of squares of the 

difference between the actual observed activity and that predicted from the regression. A cross-validation 

R2 can be defined by 

,2     .    PRESS 
Rl.=l- 

SSTotal 

Unlike R2, this R^ does not increase if irrelevant predictors are added to the model; rather it tends to 

decrease. And where R2 is necessarily non-negative, R^, may be negative. This non-uncommon 

situation is an indication that the model fitted is poor - worse, in fact, than making predictions by 

ignoring the predictors and using the mean activity as the prediction in all circumstances. 

Rl mimics the results of applying the final regression to predicting a future case; large values can be 

interpreted unequivocally and without regard to either the number of cases or predictors as indicating that 

the fitted regression will accurately predict the activity of future compounds of the same chemical type as 

those used to calibrate the regression. 

3. RESULTS AND DISCUSSION 

Table III provides results of studies done on the complete set of 31 diverse compounds as well as the 

subset of 18 haloalkanes for the prediction of human logPbl0od:air. Examining the models developed using 

structural descriptors, we find that the RR methodology is generally superior to both PCR and PLS. This 

is supported by our earlier studies with various congeneric and diverse sets of chemicals.(3436) The model 

developed using TC descriptors as independent variables was superior to those developed with other 

structural descriptor classes in the analysis of the 31 diverse compounds, while the TS+TC model was 

superior in the analysis of the 18 haloalkanes. 
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The results of QSPRs reported in this paper show that structure-property correlations are comparable 

or superior to property-property correlations involving experimental saline:air and olive oihair partition 

coefficients in the prediction of human blood:air partition coefficient. For the set of 31 diverse chemicals, 

a cross-validated R2 of 0.874 and a PRESS of 7.79 is obtained for the TC model, while the property- 

property model utilizing logPsa,ine:air and logPolive:oii air yields a cross-validated R2 of 0.889 with a PRESS of 

6.19 (Table III). For the set of 18 haloalkanes, the TS+TC models yields a cross-validated R2 of 0.897 

with a PRESS of 3.02, while the property-property model utilizing logPsaiine:air and logP0iiVe:oii air yields a 

cross-validated R2 of 0.846 with a PRESS of 4.50. However, property-property models in which rat 

logPbiood:airis used to predict human logPbiood;airare superior to those in which either logPsaiine:air and 

logP0iive:oiiairOr structural parameters are used as predictors; with a cross-validated R2 of 0.963 and PRESS 

of 2.25 for the full set of 31 compounds, and a cross-validated R2 of 0.961 and PRESS of 1.16 for the 

subset of 18 haloalkanes. 

It is clear from the results presented in Table III that experimental rat blood:air partition coefficient is 

the best predictor of human blood:air partition coefficient. Acquiring these data, however, is time 

consuming and requires laboratory testing resources along with the sacrifice of animals. Experimental 

determination of rat blood: air partition coefficient of hundreds or thousands of candidate chemicals would 

be a daunting task. The theoretical descriptor-based models, on the other hand, can provide reasonable 

estimates very quickly and at a low cost. 

Ridge regression coefficients and standard errors for the top 10 descriptors based on 111 values for the 

human logPbi00d:airTC model based on the set of 31 diverse chemicals are provided in Table IV. The 

indices most important for the prediction of human logPbi00d:air include: a) molecular weight (fw), 

quantifying molecular size, b) triplet indices (AZVy), encoding information about the nature of atoms, c) 

electrotopological state indices (SdO, SddSN, SSBr), which are numerical descriptors of the electronic 

states of atoms, d) valence and bonding connectivity indices ( V, V), which quantify structural 

information regarding molecular size and shape, and e) a hydrogen bonding parameter (HBi). The 

important role of molecular factors such as size, electronic interactions, and hydrogen bonding in 

determining partition coefficients of chemicals is evident from our earlier studies(3,37) and those of Kamlet 

etal.(38) 

It is important to reiterate that model predictability is best judged, not with a fitted model, but with a 

cross-validated model wherein each of the compounds, in turn, is omitted from the data set and its value 

then determined by the coefficients of the remaining n-1 compounds. In this way, we have an accurate, if 

not conservative, indication of how well the model will predict property values of new compounds which 

are similar to those used to create the model. Figure 1 illustrates the relationship between the fitted and 

experimental human logPbi00d:air values using the TC model for the set of 31 diverse compounds. All 
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statistical values reported in this paper, however, are based on cross-validated results. Accordingly, 

Figure 2 illustrates the relationship between the cross-validated predicted and experimental human 

logPbiood:air values using the TC model for the set of 31 diverse compounds. 

In conclusion, the models based on rat logPbiood:air are superior to any of the structure-based models. It 

is important to note, however, that experimental data are not currently available for the majority of 

compounds; and obtaining this data is costly in terms of time and monetary resources. In contrast, we are 

able to obtain reasonably good models using structural descriptors that can be calculated very quickly and 

inexpensively for both existing and unsynthesized chemicals. Modeling based on structural descriptors 

also promotes an understanding of the theoretical basis of properties and reduces the need for animal 

research, an area to which a growing aversion exists in our society. 
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Submitted to Risk Analysis 

Table II. Symbols, definitions and classification of calculated molecular descriptors  
 Topostructural (TS)  

I* Information index for the magnitudes of distances between all possible pairs of vertices of a 
graph 

I* Mean information index for the magnitude of distance 

W Wiener index = half-sum of the off-diagonal elements of the distance matrix of a graph 
ID Degree complexity 
Hv Graph vertex complexity 
HD Graph distance complexity 

IC Information content of the distance matrix partitioned by frequency of occurrences of distance 

h 
Mi A Zagreb group parameter = sum of square of degree over all vertices 
M2 A Zagreb group parameter = sum of cross-product of degrees over all neighboring (connected) 

vertices 
h^ Path connectivity index of order h = 0-10 
h£C Cluster connectivity index of order h = 3-6 
h^pc Path-cluster connectivity index of order h = 4-6 
h^Ch Chain connectivity index of order h = 3-10 
Ph Number of paths of length h = 0-10 
J Balaban's J index based on topological distance 

nrings Number of rings in a graph 

ncirc Number of circuits in a graph 

DN2Sy Triplet index from distance matrix, square of graph order (# of non-H atoms), and distance 
sum; operation y = 1-5 

DN2ly Triplet index from distance matrix, square of graph order, and number 1; operation y = 1-5 
ASly Triplet index from adjacency matrix, distance sum, and number 1; 

operation y= 1-5 
DSly Triplet index from distance matrix, distance sum, and number 1; 

operation y= 1-5 
ASNy Triplet index from adjacency matrix, distance sum, and graph order; operation y = 1-5 
DSNy Triplet index from distance matrix, distance sum, and graph order; 

operation y = 1-5 
DN2Ny Triplet index from distance matrix, square of graph order, and graph order; operation y = 1 -5 
ANSy Triplet index from adjacency matrix, graph order, and distance sum; operation y = 1-5 
AN 1 y Triplet index from adj acency matrix, graph order, and number 1; 

operation y = 1-5 
ANNy Triplet index from adjacency matrix, graph order, and graph order again; operation y = 1 -5 
ASVy Triplet index from adjacency matrix, distance sum, and vertex degree; operation y = 1-5 
DSVy Triplet index from distance matrix, distance sum, and vertex degree; operation y = 1-5 
ANVy Triplet index from adjacency matrix, graph order, and vertex degree; operation y = 1-5 

Topochemical (TC) 

O Order of neighborhood when ICr reaches its maximum value for the hydrogen-filled graph 
Oort) Order of neighborhood when ICr reaches its maximum value for the hydrogen-suppressed 

graph 
Iorb Information content or complexity of the hydrogen-suppressed graph at its maximum 

neighborhood of vertices 
ICr Mean information content or complexity of a graph based on the r* (r = 0-6) order 

neighborhood of vertices in a hydrogen-filled graph 
SICr Structural information content for r* (r = 0-6) order neighborhood of vertices in a hydrogen- 
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CICr 

Y v 
AC 

hvb 
ACh 

APC 

V h£ 
V ACh 

APC 

JB 

Jx 

JY 

HB! 
AZVy 
AZSy 
ASZy 
AZNy 
ANZy 
DSZy 
DN2Zy 

nvx 
nelem 
fw 
si 
totop 
suml 
sumdell 
tets2 
phia 
IdCbar 
IdC 
Wp 
Pf 
Wt 
knotp 
knotpv 
nclass 
numHBd 
numwHBd 
numHBa 
SHCsats 
SHCsatu 
SHvin 
SHtvin 
SHavin 
SHarom 
SHHBd 

SHwHBd 

SHHBa 

filled graph 
Complementary information content for r* (r = 0-6) order neighborhood of vertices in a 
hydrogen-filled graph 
Bond path connectivity index of order h = 0-6 
Bond cluster connectivity index of order h = 3-6 

Bond chain connectivity index of order h = 3- 6 

Bond path-cluster connectivity index of order h = 4-6 

Valence path connectivity index of order h = 0-10 
Valence cluster connectivity index of order h = 3-6 

Valence chain connectivity index of order h = 3-10 

Valence path-cluster connectivity index of order h = 4-6 

Balaban's J index based on bond types 
Balaban's J index based on relative electronegativities 
Balaban's J index based on relative covalent radii 
Hydrogen bonding parameter 
Triplet index from adjacency matrix, atomic number, and vertex degree; operation y = 1-5 
Triplet index from adjacency matrix, atomic number, and distance sum; operation y = 1-5 
Triplet index from adjacency matrix, distance sum, and atomic number; operation y = 1-5 
Triplet index from adjacency matrix, atomic number, and graph order; operation y = 1-5 
Triplet index from adjacency matrix, graph order, and atomic number; operation y = 1-5 
Triplet index from distance matrix, distance sum, and atomic number; operation y = 1-5 
Triplet index from distance matrix, square of graph order, and atomic number; operation y = 1- 

5 
Number of non-hydrogen atoms in a molecule 
Number of elements in a molecule 
Molecular weight 
Shannon information index 
Total Topological Index t 
Sum of the intrinsic state values I 
Sum of delta-I values 
Total topological state index based on electrotopological state indices 
Flexibility index (kpl* kp2/nvx) 
Bonchev-TrinajstiD information index 
Bonchev-TrinajstiD information index 
Wienerp 
Plattf 
Total Wiener number 
Difference of chi-cluster-3 and path/cluster-4 
Valence difference of chi-cluster-3 and path/cluster-4 
Number of classes of topologically (symmetry) equivalent graph vertices 
Number of hydrogen bond donors 
Number of weak hydrogen bond donors 
Number of hydrogen bond acceptors 
E-State of C sp3 bonded to other saturated C atoms 
E-State of C sp3 bonded to unsaturated C atoms 
E-State of C atoms in the vinyl group, =CH- 
E-State of C atoms in the terminal vinyl group, =CH2 

E-State of C atoms in the vinyl group, =CH-, bonded to an aromatic C 
E-State of C sp2 which are part of an aromatic system 
Hydrogen bond donor index, sum of Hydrogen E-State values for -OH, =NH, 
-NH2, -NH-, -SH, and #CH 
Weak hydrogen bond donor index, sum of C-H Hydrogen E-State values for hydrogen atoms 
on a C to which a F and/or Cl are also bonded 
Hydrogen bond acceptor index, sum of the E-State values for -OH, =NH, 
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-NH2, -NH-, >N-, -0-, -S-, along with -F and -Cl 
Qv General Polarity descriptor 
NHBinty Count of potential internal hydrogen bonders (y = 2-10) 
SHBinty E-State descriptors of potential internal hydrogen bond strength (y =2-10) 

Electrotopological State index values for atoms types: 
SHsOH, SHdNH, SHsSH, SHsNH2, SHssNH, SHtCH, SHother, SHCHnX, Hmax Gmax, 
Hmin, Gmin, Hmaxpos, Hminneg, SsLi, SssBe, Sssss,Bem, SssBH, SsssB, SssssBm, SsCH3, 
SdCH2, SssCH2, StCH, SdsCH, SaaCH, SsssCH, SddC,StsC, SdssC, SaasC, SaaaC, SssssC, 
SsNH3p, SsNH2, SssNH2p, SdNH, SssNH, SaaNH, StN, SsssNHp, SdsN, SaaN, SsssN, 
SddsN, SaasN, SssssNp, SsOH, SdO, SssO, SaaO, SsF, SsSfflB, SssSiH2, SsssSiH, SssssSi, 
SsPH2, SssPH, SsssP, SdsssP, SsssssP, SsSH, SdS, SssS, SaaS, SdssS, SddssS, SssssssS, SsCl, 
SsGeH3, SssGeH2, SsssGeH, SssssGe, SsAsH2, SssAsH, SsssAs, SdsssAs, SsssssAs, SsSeH, 
SdSe, SssSe, SaaSe, SdssSe, SddssSe, SsBr, SsSnH3, SssSnH2, SsssSnH, SssssSn, Ssl, 
SsPbH3, SssPbH2, SsssPbH, SssssPb        

Geometrical / Shape (3D) 
kpO Kappa zero 
kpl-kp3 Kappa simple indices 
kal-ka3 Kappa alpha indices 
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Table III. Summary statistics of predictive models for human logPbiood:air based on experimental properties and 
theoretical structural descriptors. 

Independent 
Variables 

A. 31 DIVERSE CHEMICALS 

RR 
Rz PRESS 

PCR 
Rz PRESS 

PLS 
R' PRESS 

LR 
R   c.v. PRESS 

Structural descriptors 

TS 0.257 45.8 -0.451 89.4 0.052 58.4 

TS+TC 0.846 9.48 0.165 51.4 0.677 19.9 

TS+TC+3D 0.827 10.6 0.140 53.0 0.620 23.4 

TS+TC+3D+logPa 0.835 10.2 0.112 54.7 0.652 21.4 

TS 0.257 45.8 -0.451 89.4 0.052 58.4 

TC 0.874 7.79 0.403 36.8 0.709 17.9 

3D 0.147 52.6 -0.013 62.4 -0.256 77.4 

Properties 

LogPoiive oilrair + LogPsaline:air 

Rat 10gPWood:air 

Independent 
Variables 

RR 
R   c.v. PRESS 

B. 18 HALOALKANES 

PCR 
Rz PRESS 

PLS 
R' PRESS 

0.899 
0.963 

6.19 
2.25 

LR 
Rz PRESS 

Structural descriptors 

TS 0.252 22.0 -1.53 74.3 -0.815 53.2 

TS+TC 0.897 3.02 0.825 5.14 0.678 9.45 

TS+TC+3D 0.892 3.16 0.856 4.22 0.702 8.74 

TS+TC+3D+logPa 10.892 3.18 0.856 4.23 0.704 8.69 

TS .   0.252 22.0 -1.53 74.3 -0.815 53.2 

TC ,' 0.891 3.21 0.853 4.32 0.616 11.3 

3D 0.753 7.24 0.593 11.9 0.562 12.9 

Properties 

LogPoiive oil:air+ LogPsaline:air 

Rat l0gPblood:air 

Calculated logP„.0ctanoi:water; values included in Table I. 

0.846 
0.961 

4.50 
1.16 
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Table IV. Ridge regression coefficient and standard error for each of the top 10 descriptors, ranked by 111, in the 
topochemical model for the prediction of human logPbiood:air, n = 31.  
Descriptor RR coeff s1eJ t  

0.021 10.690 
0.032 10.660 
0.159 -10.640 
0.016 8.000 
0.052 6.670 
0.034 6.580 
0.024 5.640 
0.044 5.390 
0.054 5.310 
0.028 5.060 

SdO 0.227 
HB! 0.340 
SddsN -1.694 
AZV3 0.130 

'xv 0.345 
AZV4 0.224 
AZVi 0.133 
SsBr 0.238 
fw 0.287 

v 0.139 
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FIGURE CAPTIONS 

Figure 1. Experimental vs fitted human logPbiood:air using the topochemical (TC) ridge regression 

(RR) model for the setof 31 diverse compounds 

Figure 2. Experimental vs cross-validated predicted human logPbiood:air using the topochemical 

(TC) ridge regression (RR) model for the set of 31 diverse compounds 
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Figure 1. 

2 4 

Fitted LogPblood:air 
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Figure 2. 

0 2 4 

Cross-validated Predicted LogPbiood:air 
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